Increasing robustness of ventral visual cortex revealed by
neurally-guided deep neural networks
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INTRODUCTION

The human visual system is remarkably robust to identity-
preserving changes to the image (i.e. changes in viewpoint,
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Hypothesis: Guiding DNNs to learn neural representations
from successive stages of the VVS should result in successive
Increases In robustness to adversarial attack.
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Neural-guidance: Similar to previous work#>, we employ a two-
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Neural guidance improved DNN robustness, with a clear
hierarchical pattern of increasing improvement when using
progressively later brain regions. This pattern was consistent
across multiple human subjects, adversarial attack
benchmarks, datasets, and tasks.

Distinct Representational Spaces

Representational Similarity Analysis (RSA)’ revealed a repre-
sentational shift for neurally-guided models (red circles) away
from conventional models (blue and gray circles). These
distinct neural representational space may contribute to the
Improved robustness Iin neurally-guided models.

smoothed by conventional methodss.
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CONCLUSIONS & IMPLICATIONS
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Conclusions:
» Neural guidance from successive ROIls in VVS leads to
hierarchical improvements in DNN adversarial robustness.

» Neurally-guided DNNs developed distinct representational
spaces that are smoother and resistant to transfer attacks.

Implications:

» Robustness emerges from the evolving representational
space along the ventral visual stream

» Potential for understanding human representational space

headed ResNetl8 architecture that simultaneously learns a 50-
category ImageNet classification task (“task head”) while aligning
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Control conditions: Four baseline models were
included: "None”, “Random”, “V1-shuffle”, and
“TO-shuffle”, each representing different alter-
native hypotheses.
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Multidimensional Scaling (MDS) plot (right) of RSA matrix (left)
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IS provided for a clearer 2D visualization.
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